Abstract

Channel assignment is a challenging issue for multi-radio multi-channel wireless networks, especially in a competing environment. This paper investigates channel assignment for selfish nodes in a heterogeneous scenario, in which nodes may have different QoS requirements and thus compete for different channels with unequal bandwidth. The interaction among nodes is formulated as a non-cooperative Multi-radio Channel Assignment Game (MCAG), where Nash Equilibrium (NE) corresponds to a stable channel assignment outcome from which no individual node has the incentive to deviate. The NEs in MCAG are characterized in this paper. Since multiple NEs may exist in this game, it is natural to choose the NE that maximizes the network utility, i.e., the sum of node utilities. It is shown that the optimal NE outcome can be derived by solving an integer non-linear programming problem. Based on some observations on the radio number distribution of NE, we propose a two-stage optimization algorithm to achieve an optimal channel assignment. Finally, computer simulations validate the effectiveness of the proposed algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.