Abstract

An investigation was made of the use of laser light scattering and laser-induced resonance fluorescence, employed in combination with spontaneous emission, as diagnostic probes of the atmospheric-pressure high-voltage spark discharge, to elucidate information on various species. Raman scattering allowed the space- and time-resolved investigation of N2 behavior in the spark channel. Emission profiles of Al(I) and AlO were obtained to establish the temporal regions that were nonemitting for each species. Resonance fluorescence permitted observation of aluminum species in the nonemitting post-discharge torus both spatially and temporally resolved. The channel dynamics studies revealed the interaction of atmospheric nitrogen with the spark channel. Fluorescence studies on aluminum as the analyte species revealed the presence of Al(I) and AlO in the post-discharge torus region, after the discharge current has ceased, and after the Al(I) and AlO emission has ceased. This establishes that analyte material exists in more than one chemical form in the nonemitting regions of the spark discharge, and that excitation decays before all free atoms recombine into small molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.