Abstract

The frequency of cetacean strandings is increasing, with multiple causes identified. We examined temporal and spatial trends in stranding numbers along the coastal areas of the East China Sea from 1990 to 2021. Using structural equation models, we analyzed the relationships between strandings and climate, oceanic properties, and human activities. Our findings revealed time-dependent interannual variability in strandings but no linear trend, indicating relative stability in cetacean strandings. Seasonal patterns were observed only in narrow-ridged finless porpoises (Neophocaena asiaeorientalis), with significant spring increases (March to May). Clustering of strandings occurred in central Fujian and northern/southern Taiwan, according to spatial analysis. The impact of variables on cetacean strandings varied across time periods. Storm surges, coastal fishing, and the Pacific decadal oscillation were associated with stranding events from 1990 to 2006. However, from 2006 to 2021, the influence of storm surges weakened, while the climate index only indirectly affected strandings through sea surface temperature and salinity, with an increased intensity in the effects of winter sea surface temperature and salinity. Structural equation models unveiled the cascading effects of environmental changes on strandings. This study reports changing trends in cetacean strandings and identifies relevant variables. Although not exhaustive, understanding the reasons behind strandings enhances our comprehension of cetacean responses to environmental changes, supporting targeted conservation and management efforts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call