Abstract
We study the non-equilibrium phase diagram of a fully-connected Ising p-spin model, for generic p > 2, and investigate its robustness with respect to the inclusion of spin-wave fluctuations, resulting from a ferromagnetic, short-range spin interaction. In particular, we investigate the dynamics of the mean-field model after a quantum quench: we observe a new dynamical phase transition which is either first or second order depending on the even or odd parity of p, in stark contrast with its thermal counterpart which is first order for all p. The dynamical phase diagram is qualitatively modified by the fluctuations introduced by a short-range interaction which drive the system always towards various prethermal paramagnetic phases determined by the strength of time dependent fluctuations of the magnetization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Statistical Mechanics: Theory and Experiment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.