Abstract

A pressure-overload model in the rat by banding the pulmonary trunk (PT) was developed to investigate alterations in gene expression in left- and right-ventricular compartments during the transition from compensated right-ventricular (RV) hypertrophy to right heart failure. Right heart failure in rat is characterized by liver cirrhosis, hydrothorax and ascites. The diameter of constriction was found to determine the time course of heart failure development. Only the RV free wall and the right atrium increased in weight, without a difference between compensated and failing RV. An increase in circulating ANP revealed a hypertrophic response of the myocardium, while increased circulating ammonia levels discriminated between compensated hypertrophy and failure. As parameters for stress, fibrosis and Ca2+-handling, changes in the pattern and level of the mRNAs encoding atrial natriuretic peptide (ANP), collagenIIIα1, and sarcoplasmic endoplasmic reticular calcium ATPase 2 (SERCA2), phospholamban (PLB) and calsequestrin (CSQ) were studied by Northern blot andin situhybridization analyses. Pulmonary trunk banding resulted in an induction of ANP mRNA, a moderate increase in collagenIIIα1mRNA and a decrease in SERCA2 and PLB mRNA levels in both the left and right ventricles, but changes were most pronounced in the myocardium surrounding the RV cavity. Increased ammonia blood levels are a promising prognostic marker to detect the development of right heart failure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.