Abstract

Environmental change has been proposed as a factor that contributed to the extinction of the Neanderthals in Europe during MIS3. Currently, the different local environmental conditions experienced at the time when Anatomically Modern Humans (AMH) met Neanderthals are not well known. In the Western Pyrenees, particularly, in the eastern end of the Cantabrian coast of the Iberian Peninsula, extensive evidence of Neanderthal and subsequent AMH activity exists, making it an ideal area in which to explore the palaeoenvironments experienced and resources exploited by both human species during the Middle to Upper Palaeolithic transition. Red deer and horse were analysed using bone collagen stable isotope analysis to reconstruct environmental conditions across the transition. A shift in the ecological niche of horses after the Mousterian demonstrates a change in environment, towards more open vegetation, linked to wider climatic change. In the Mousterian, Aurignacian and Gravettian, high inter-individual nitrogen ranges were observed in both herbivores. This could indicate that these individuals were procured from areas isotopically different in nitrogen. Differences in sulphur values between sites suggest some variability in the hunting locations exploited, reflecting the human use of different parts of the landscape. An alternative and complementary explanation proposed is that there were climatic fluctuations within the time of formation of these archaeological levels, as observed in pollen, marine and ice cores.

Highlights

  • Marine Isotope stage 3 (MIS3) (60-25ka BP) was a period of instability with rapid and acute climatic changes[1,2]

  • An ideal location to apply this methodology to reconstruct the conditions faced by late Neanderthals and early Anatomically Modern Humans (AMH) during MIS3 is the Cantabrian region in the Atlantic zone of northern Spain, which contains a high density of Middle and early Upper Palaeolithic sites[31]

  • The results of this study of bone collagen δ13C, δ15N and δ34S values conducted on animal remains, with evidence of human manipulation, pertaining to the Middle-Upper Palaeolithic transition in the Cantabrian Region of Northern Spain provide a human-related reconstruction of the past environmental conditions at the time the replacement of late Neanderthals by the anatomically modern human populations took part in the Atlantic zone of Iberia

Read more

Summary

Introduction

Marine Isotope stage 3 (MIS3) (60-25ka BP) was a period of instability with rapid and acute climatic changes[1,2]. Results of bone collagen δ13C, δ15N and δ34S analyses on macromammals have identified temporal, intra- and inter-site trends in the climatic and environmental conditions directly experienced by late Neanderthals and early AMH in this archaeologically important region. The sites analysed in this article are located in the two small coastal provinces of the Spanish Basque Country (the autonomous region of Euskadi): Gipuzkoa and Bizkaia This is an eminently mountainous area straddling 43°10′ north latitude, bounded to the north by the Bay of Biscay, to the south by the Basque Mountain ranges of the Cantabrian Cordillera, to the east by the western end of the Pyrenees and to the west by the orographically less “chaotic”/structurally “banded” regions of Cantabria and Asturias. During the Last Glacial, there were mountain glaciers on some of the highest peaks of the Basque Mountains

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.