Abstract

A key challenge to the effective utilization of solar energy is to promote efficient photoinduced charge transfer, specifically avoiding unproductive, circuitous electron-transfer pathways and optimizing the kinetics of charge separation and recombination. We hypothesize that one way to address this challenge is to develop a fundamental understanding of how to initiate and control directional photoinduced charge transfer, particularly for earth-abundant first-row transition-metal coordination complexes, which typically suffer from relatively short excited-state lifetimes. Here, we report a series of functionalized heteroleptic copper(I)bis(phenanthroline) complexes, which have allowed us to investigate the directionality of intramolecular photoinduced metal-to-ligand charge transfer (MLCT) as a function of the substituent Hammett parameter. Ultrafast transient absorption suggests a complicated interplay of MLCT localization and solvent interaction with the Cu(II) center of the MLCT state. This work provides a set of design principles for directional charge transfer in earth-abundant complexes and can be used to efficiently design pathways for connecting the molecular modules to catalysts or electrodes and integration into systems for light-driven catalysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call