Abstract

Phase-contrast magnetic resonance imaging (PC-MRI) or flow-sensitive MRI can be used to noninvasively measure intracranial vascular and CSF flow. Monro-Kellie homeostasis is the complex compensatory mechanism for the increase in intracranial blood volume during systole. Through PC-MRI techniques, our understanding of Monro-Kellie homeostasis and the associated intracranial hydrodynamics has greatly improved. Failure of this homeostatic mechanism has been implicated in a wide range of cerebral disorders, including vascular and Alzheimer's dementia, late-onset depression, benign and secondary intracranial hypertension, communicating and normal pressure hydrocephalus, and age-related white matter changes. The most common mode of homeostatic failure is due to vascular disease with decreased cerebral arterial compliance. This has wide-reaching implications in the investigation of patients with cerebral vascular disease. Here we discuss the role of PC-MRI in the study of cerebral hydrodynamics and the current understanding of Monro-Kellie homeostasis in both healthy and disease states. Quantitative assessment of the changes in this homeostatic mechanism using PC-MRI has important implications in the development of biomarkers of vascular involvement in disease with application in diagnosis, treatment planning, phenotype identification, and outcome assessment in clinical trials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call