Abstract

In this study, we aimed to investigate the pathologic and ultrastructural changes in transplanted mouse livers after different durations of cold storage by testing indicators of liver function and energy metabolism. We aimed to describe the effects of cold storage on liver function and the mechanisms of cold storage damage. We randomly placed 8-weekold male C57BL/6 mice into the following 4 groups to establish a cold-preserved mouse model of liver transplant: a normal control group and 3 cold storage groups, in which livers were stored for 4, 12, and 24 hours. Hepatic morphology, ultrastructural changes, and glycogenolysis were observed by hematoxylin and eosin staining, periodic acid-Schiff staining, and transmission electron microscopy. After different durations of cold storage, livers were reperfused with 4°C University of Wisconsin solution to obtain perfusion fluid, and alanine and aspartate aminotransferase levels were measured. Glycogen synthase, hypoxia-inducible factor-1α, Krüppel-like factor 2, and endothelial nitric oxide synthase mRNA expression levels in liver tissues were detected by real-time polymerase chain reaction, and aquaporin 8 protein expression levels in liver tissues were detected by Western blot. Hematoxylin and eosin staining and electron microscopy ofliver showed signs ofinjury after 12 hours of cold storage, which included mainly cytoplasmic edema characterized by loose liver cell arrangement, increased hepatic sinus fissure, mitochondrial swelling, and nuclear pyknosis. Periodic acid-Schiff staining showed that glycogen content was significantly reduced, with glycogen synthase levels also reduced. Alanine aminotransferase and aspartate aminotransferase levels gradually increasedwith cold storage. Glycogen synthase, Krüppel-like factor 2, endothelial nitric oxide synthase, and aquaporin 8 expression levels also gradually increased in liver tissue. These levels gradually decreased, but hypoxia-inducible factor-1α increased. Mouse livers showed progressive damage to structure and function during cold storage, with mitochondrial damage perhaps showing the earliest damage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.