Abstract
Chimeric antigen receptor (CAR) T-cell therapy is growing clinically and commercially as a powerful new approach to treat cancer. Understanding how key culture conditions such as pH and dissolved oxygen (DO) affect CAR T-cell generation and function is important in developing better CAR-T manufacturing processes and CAR T-cell therapies for patients. We used the automated mini-bioreactor (AMBR) 15 platform to assess how differences in pH and DO affect CAR T-cell transduction, proliferation, and differentiation. We found that higher pH can significantly improve CAR T-cell transduction and proliferation, and also biases CAR T-cells away from an effector memory and toward a more central memory phenotype. Both high and low DO negatively affect CAR T-cell generation, with both hypoxic and hyperoxic conditions reducing T-cell transduction into CAR T-cells. Collectively, this data underscores how pH and DO can significantly affect CAR T-cell expansion and differentiation, and provides insight into the optimal culture conditions to enhance CAR T-cell yield and phenotype in clinical and commercial processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.