Abstract

Synthesis of docosahexaenoic acid (DHA) from its metabolic precursors contributes to membrane incorporation of this FA within the central nervous system. Although cultured neural cells are able to produce DHA, the membrane DHA contents resulting from metabolic conversion do not match the high values of those resulting from supplementation with preformed DHA. We have examined whether the DHA precursors down-regulate the incorporation of newly formed DHA within human neuroblastoma cells. SH-SY5Y cells were incubated with gradual doses of alpha-linolenic acid (alpha-LNA), EPA, or docosapentaenoic acid (DPA), and the incorporation of DHA into ethanolamine glycerophospholipids was analyzed as a reflection of synthesizing activity. The incorporation of EPA, DPA, and preformed DHA followed a dose-response saturating curve, whereas that of DHA synthesized either from alpha-LNA, EPA, or DPA peaked at concentrations of precursors below 15-30 microM and sharply decreased with higher doses. The mRNA encoding for six FA metabolism genes were quantified using real-time PCR. Two enzymes of the peroxisomal beta-oxidation, L-bifunctional protein and peroxisomal acyl-CoA oxidase, were expressed at lower levels than fatty acyl-CoA ligase 3 (FACL3) and delta6-desaturase (delta6-D). The delta6-D mRNA slightly increased between 16 and 48 h of culture, and this effect was abolished in the presence of 70 microM EPA. In contrast, the EPA treatment resulted in a time-dependent increase of FACL3 mRNA. The terminal step of DHA synthesis seems to form a "metabolic bottleneck," resulting in accretion of EPA and DPA when the precursor concentration exceeds a specific threshold value. We conclude that the critical precursor- concentration window of responsiveness may originate from the low basal expression level of peroxisomal enzymes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.