Abstract
The relationships between the stimulation frequency and the force developed by motor units (MUs) of the medial gastrocnemius muscle were compared between intact rats and animals after total transection or hemisection of the spinal cord at the low thoracic level. The experiments on functionally isolated MUs were carried out 14, 30, 90, and 180 days after the spinal cord injury. Axons of investigated MUs were stimulated with trains of pulses at 10 progressively increased frequencies (from 1 to 150 Hz), and the force-frequency curves were plotted. Spinal cord hemisection resulted in a considerable leftward shift of force-frequency curves in all types of MUs. After the total transection, a leftward shift of the curve was observed in fast MUs, whereas there was a rightward shift in slow MUs. These changes coincided with a decrease of stimulation frequencies necessary to evoke 60% of maximal force. Moreover, the linear correlation between these stimulation frequencies and the twitch contraction time observed in intact rats was disrupted in all groups of animals with spinal cord injury. The majority of the observed changes reached the maximum 1 mo after injury, whereas the effects evoked by spinal cord hemisection were significantly smaller and nearly constant in the studied period. The results of this study can be important for the prediction of changes in force regulation in human muscles after various extends of spinal cord injury and in evaluation of the frequency of functional electrical stimulation used for training of impaired muscles.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.