Abstract

Historical temperature and precipitation extremes and their potential future changes are quantified and evaluated throughout the landmass of China. A statistical model of climate extremes based on generalized extreme value (GEV) distribution is applied to both historical climate data and bias correction and spatial disaggregation (BCSD) downscaled Coupled Model Inter-comparison Project phase 5 (CMIP5) projections. The results indicate relatively moderate historical warm extreme conditions in China with regional means of maximum temperature 28.9, 29.4, and 29.8 °C for 10-, 20-, and 50-year return periods, respectively, whereas the corresponding regional means of minimum temperature are −20.1, −20.8, and −21.5 °C, manifesting a downward trend northwardly with relative larger regional variations in cold extremes. The historical precipitation extremes also decline gradually from south-southeast toward northwest with significant regional differences. As for the future, the warm extremes are expected to aggravate by roughly 1.66–4.92 °C projected by CMIP5, indicating larger increasing rate and spatial differences compared to cold extremes. The extreme precipitation is projected to increase 7.9–13.4 %, the dry regions would see a larger increasing rate compared to wet regions. The increasing radiative forcing concentration would trigger upward variations in both temperature and precipitation extreme magnitudes. Also, the warm extreme changes are more sensitive to the radiative forcing concentration than the cold extremes. The CMIP5 projections basically maintain a favorable inter-model consistency in temperature and rainfall extreme simulation for the future, but the inter-model difference of warm extremes is larger than cold extremes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call