Abstract

The ROCK signaling pathway is involved in numerous fundamental cellular functions such as cell migration, apoptosis, inflammatory responses, and neurite outgrowth. Previous studies demonstrate that Fasudil exhibited therapeutic potential of experimental autoimmune encephalomyelitis (EAE) possibly through immune-modulation and anti-inflammation. In this study, we observed the effect of Fasudil on synaptic protection of EAE mice. Fasudil ameliorated the clinical severity of EAE and inhibited Rho kinase (ROCK), especially ROCK II, in brain and spinal cord of EAE mice. Protein extracts from spinal cord of Fasudil-treated EAE mice promoted the formation of neurite outgrowth when co-cultured with primary neurons, indicating that peripheral administration of Fasudil can enter the central nervous system (CNS) and exhibited its biological effect on the formation of neurite outgrowth. Synapse-related molecule synaptophysin was enhanced, and CRMP-2, AMPA receptor, and GSK-3β were declined in spinal cord of Fasudil-treated mice. Neurotrophic factor BDNF and GDNF as well as immunomodulatory cytokine IL-10 in spinal cord were elevated in Fasudil-treated mice, while inflammatory cytokine IL-17, IL-1β, IL-6, and TNF-α were obviously inhibited, accompanied by the decrease of inflammatory M1 iNOS and the increase of anti-inflammatory M2 Arg-1, providing a microenvironment that contributes to synaptic protection. Our results indicate that Fasudil treatment protected against synaptic damage and promoted synaptic formation, which may be related with increased neurotrophic factors as well as decreased inflammatory microenvironment in the CNS of EAE mice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.