Abstract

We analyzed soil quality based on soil microbial characteristics of three different vegetation types in the wetlands of East Dongting Lake, including Carex tristachya wetland (CTW), Phragmites australis wetland (PAW), and Salix babylonica wetland (SBW). The soil microbial biomass carbon (MBC), nitrogen (MBN) and enzyme activities were measured and the key influen-cing factors were analyzed during the normal, flood, and dry periods. The results showed that: 1) The amounts of MBC, MBN, and the activities of invertase and cellulase (except cellulase of dry season) in 0-10 cm were higher than those in 10-20 cm for all wetlands, while the catalase activity showed an opposite pattern. 2) The amounts of MBC and MBN and the values of MBC/TOC and MBN/TN for the 0-20 cm soil layer of each vegetation type wetland were the lowest in flood period. 3) Soil invertase activity for each vegetation type wetland in the 0-20 cm soil layer peaked in the dry period, while soil cellulase activity peaked in the normal period. The seasonal fluctuation of soil catalase activities in all wetlands were small, with activities being slightly higher in flood period than the other two periods. 4) Among different vegetation types, soil invertase activity of PAW was significantly higher than that of other vegetation types, and cellulase activity of which was the lowest in both normal and flood periods. There was no difference in these two enzymes activities among wetlands during the dry period. The highest soil catalase activity was found in CTW during normal period and in SBW during dry period, respectively, while its lowest value was in PAW during flood period. 5) Soil MBC, MBN and invertase activity were correlated positively with soil TOC, TN and TP, and negatively correlated with soil pH. The activities of soil cellulase and catalase were significantly negatively correlated with TOC, TN, TP and positively correlated with pH. It suggested that the seasonal fluctuation of water level affected soil C, N, P contents and pH values, with consequences on soil MBC, MBN and enzyme activities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call