Abstract
Intravenous immunoglobulins (IVIg) are standard treatment for Guillain-Barré syndrome (GBS). Their exact mechanisms of action are versatile and not fully understood. One possible mechanism is neutralization of circulating autoantibodies via binding to anti- idiotypic antibodies forming idiotype-anti-idiotype dimeric IgG immune complexes. To examine the role of immune complex formation as mechanism of action for IVIg in GBS, 34 C57Bl/6 mice were either treated with anti-ganglioside antibodies and IVIg or IVIg and PBS alone, whereas eight additional mice were treated either with anti-ganglioside autoantibodies and IVIg or anti-ganglioside autoantibodies alone. Subsequently IgG dimer formation was assessed by high performance liquid chromatography (HPLC) and enzyme- linked immunosorbent assay (ELISA). In addition, IgG dimer formation was measured in sera of eight GBS patients who were treated with IVIg. In mice, a significant increase of dimeric IgG after administration of anti-ganglioside antibodies and IVIg could be observed. Re-monomerized IgG dimers showed immunoreactivity against gangliosides and serum immunoreactivity was significantly reduced after IVIg infusion. Likewise also in GBS patients, IgG dimer formation could be detected after IVIg treatment. Our data indicate that dimeric IgG immune complexes contain anti-idiotypic antibodies and provide proof of concept that IVIg treatment in GBS results in measurable amounts of IgG dimers. Larger patient cohorts are needed to evaluate serum IgG dimer increase as a possible marker for treatment response in GBS. Graphical Abstract Mechanism of action: Intravenous immunoglobulins (IVIg) and anti-ganglioside antibodies form dimeric IgG immune complexes, preventing axonal damage in Guillain-Barré Syndrome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.