Abstract

BackgroundAlthough intravitreal injection of bevacizumab (IVB) is effective for macular edema in patients with branch retinal vein occlusion (BRVO), the changes of retinal hemodynamics remain unclear. We investigated retinal hemodynamic changes in BRVO patients after IVB by performing laser speckle flowgraphy (LSFG).MethodsIn 35 BRVO patients with macular edema, the relative flow volume (RFV) of the retinal artery and vein passing through the optic disc was measured in both the occluded and non-occluded regions of the retina before IVB and 1 month after IVB by LSFG. The ischemic region of retina was measured with the Scion Image program and the severity of retinal ischemia was assessed by dividing the non-perfused area by the disc area.ResultsMacular edema improved significantly by 1 month after IVB. The venous RFV ratio showed a significant increase in the non-occluded region at 1 month after IVB. There was a significant negative correlation between the venous RFV ratio and the severity of retinal ischemia in the occluded region. On the other hand, arterial RFV ratio showed no significant change after IVB in either the occluded or non-occluded region. In addition, there was no significant correlation between the arterial RFV ratio and the severity of retinal ischemia in either the occluded or non-occluded region.ConclusionsThese results suggest that an increase of retinal venous outflow after IVB may possibly influence the resolution of macular edema and that the response of venous outflow after IVB depends on the severity of retinal ischemia in the occluded region.

Highlights

  • Intravitreal injection of bevacizumab (IVB) is effective for macular edema in patients with branch retinal vein occlusion (BRVO), the changes of retinal hemodynamics remain unclear

  • The present study revealed changes of the relative flow volume (RFV) in either the occluded or non-occluded region passing through the optic disc after IVB in BRVO patients with macular edema

  • The present study demonstrated that there was no significant change of the arterial RFV ratio in either the occluded or non-occluded region at 1 month after IVB (Fig. 2a and c), and that there was no significant correlation between the arterial RFV ratio and the severity of retinal ischemia in either region (Fig. 3a and c)

Read more

Summary

Introduction

Intravitreal injection of bevacizumab (IVB) is effective for macular edema in patients with branch retinal vein occlusion (BRVO), the changes of retinal hemodynamics remain unclear. We investigated retinal hemodynamic changes in BRVO patients after IVB by performing laser speckle flowgraphy (LSFG). Branch retinal vein occlusion (BRVO) is a very common retinal vascular condition in patients with lifestyle-related diseases such as hypertension and arteriosclerosis. A multicenter study [2] has shown that intravitreal injection of bevacizumab (IVB) is effective for macular edema in BRVO patients, but the retinal hemodynamic changes remain unclear. Laser speckle flowgraphy (LSFG) is a noninvasive technique based on the laser speckle phenomenon that allows simultaneous assessment of blood flow in the vessels of the optic nerve head, choroid, and retina [3].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call