Abstract

Litter is an important contribution to forest soil. Litter decomposition plays an important role in nutrient cycling of forest ecosystem. A field litterbag experiment was conducted to examine the dynamics of decomposition rate, nutrient release and enzyme activity during litter decomposition in the pure forests of Larix principis-rupprechtii (L) and mixed forests, including L and Betula platyphylla (B), L and Quercus mongolica (Q), as well as LBQ, in Saihanba area, Hebei Pro-vince, China. The results showed that the decomposition rate of leaf litter in L forest was significantly lower than that in mixed forests during the 720 d decomposition. The LB had the highest decomposition rate of L leaf litter. All treatments had the same change trend of nutrient contents, with the contents of N and P being increased and that of C, K and C/N being decreased. Contrast to pure leaf litter of L, leaf litter in mixed forests could promote the release of C and K, and inhibit litter N and P release. During the litter decomposition, the activities of catalase, urease and acid phosphatase increased, while that of sucrase decreased in all leaf litter of forests. The decomposition rate of leaf litter was positively correlated with the activities of catalase, urease and acid phosphatase, negatively correlated with that of sucrase. Our results showed that leaf litter mixture of L. principis-rupprechtii, B. platyphylla and Q. mongolica could enhance the litter decomposition of L. principis-rupprechtii, and that enzyme activities were closely related to litter decomposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.