Abstract
In this study, an untargeted metabolomics approach based on ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS) was used for investigating changes in chemical profiles of cow milk considering diets based on mycotoxins-contaminated corn silages. For this purpose, 45 milk samples were classified into five clusters according to the corn silage contamination profile, namely (1) low levels of Aspergillus- and Penicillium-mycotoxins; (2) low levels of fumonisins and other Fusarium-mycotoxins; (3) high levels of Aspergillus-mycotoxins; (4) high levels of non-regulated Fusarium-mycotoxins; (5) high levels of fumonisins and their metabolites, and subsequently analyzed by UHPLC-HRMS followed by a multivariate statistical analysis (both unsupervised and supervised statistical approaches). Overall, the milk metabolomic profile highlighted potential correlations between the quality of contaminated corn silages (as part of the total mixed ration) and milk composition. Metabolomics allowed to identify 628 significant milk metabolites as affected by the five levels of corn silage contamination considered, with amino acids and peptides showing the highest metabolite set enrichment (134 compounds). Additionally, 78 metabolites were selected as the best discriminant of the prediction model built, possessing a variable importance in projection score >1.2. The average Log Fold-Change variations of the discriminant metabolites provided evidence that sphingolipids, together with purine and pyrimidine-derived metabolites were the most affected chemical classes. Also, metabolomics revealed a significant accumulation of oxidized glutathione in milk samples belonging to the silage cluster contaminated by emerging Aspergillus toxins, likely involved in the oxidative imbalance. These preliminary findings provide new insights into the potential role of milk metabolomics to provide chemical indicators of mycotoxins-contaminated corn silage feeding systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Metabolites
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.