Abstract

To investigate the activity of key rate-limiting enzymes of glucose metabolism after restoration of spontaneous circulation (ROSC), to explore the potential pathophysiological mechanism of impaired myocardial energy metabolism after cardiopulmonary resuscitation (CPR). Twenty-one male Sprague-Dawley rats were randomized into three experimental groups assigned in accordance with different observation times after ROSC: Sham, instrumented rats without induced cardiac arrest or resuscitation; post-resuscitation (PR2 h); PR24 h. In these groups, CPR, including precordial compressions and synchronized mechanical ventilation, was initiated 6 min after asphyxia-induced cardiac arrest. Hearts were harvested after ROSC and samples were used to detect high-energy phosphate and glucose metabolic enzyme activity. Compared with sham, the contents of phosphocreatine and adenosine triphosphate reduced in the PR2 h group, while remained unchanged in the PR24 h group. Activities of hexokinase and pyruvate kinase did not change after ROSC. Phosphofructokinase activity decreased only in the PR24 h group. Activities of pyruvate dehydrogenase and citrate synthase fell in PR2 h group and recovered in the PR24 h group. However, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase activities fell in the PR2 h group, but did not recover in the PR24 h group. Lowered key rate-limiting enzymes activity in glucose metabolism resulted in impairment of energy production in the early stage of ROSC, but partially recovered in 24 h. This process has a role in the mechanism of impaired myocardial energy metabolism after CPR. This investigation might shed light on new strategies to treat post resuscitation myocardial dysfunction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call