Abstract

Parabolic flight maneuvers of Novespace’s Airbus A310 ZERO-G produce subsequent phases of hypergravity (about 20 s), microgravity (about 22 s) and another 20 s hypergravity on experiments located in the experiment area of the aircraft. The 29th DLR parabolic flight campaign consisted of four consecutive flight days with thirty-one parabolas each day. Euglena gracilis cells were fixed with TRIzol during different acceleration conditions at the first and the last parabola of each flight. Samples were collected and analyzed with microarrays for one-color gene expression analysis. The data indicate significant changes in gene expression in E. gracilis within short time. Hierarchical clustering shows that changes induced by the different accelerations yield reproducible effects at independent flight days. Transcription differed between the first and last parabolas indicating adaptation effects in the course of the flight. Different gene groups were found to be affected in different phases of the parabolic flight, among others, genes involved in signal transduction, calcium signaling, transport mechanisms, metabolic pathways, and stress-response as well as membrane and cytoskeletal proteins. In addition, transcripts of other areas, e.g., DNA and protein modification, were altered. The study contributes to the understanding of short-term effects of microgravity and different accelerations on cells at a molecular level.

Highlights

  • Previous parabolic flight campaigns studied the movement and physiological parameters of E. gracilis: in the 45th ESA parabolic flight campaign, a change in the beating pattern of the E. gracilis’ flagellum during the transition from hypergravity to microgravity and vice-versa was observed[18]

  • The data obtained revealed that the short-term alterations of acceleration induce significant changes in gene expression in E. gracilis, in particular of transcripts involved in www.nature.com/scientificreports signal transduction, transport mechanism, metabolic pathways and stress-response

  • Quantitative PCR analysis revealed effects on the genes involved in signal transduction, calcium signaling, stress response, heat shock, and cell cycle proteins

Read more

Summary

Introduction

Previous parabolic flight campaigns studied the movement and physiological parameters of E. gracilis: in the 45th ESA parabolic flight campaign, a change in the beating pattern of the E. gracilis’ flagellum during the transition from hypergravity (hyper-g) to microgravity (μg) and vice-versa was observed[18]. Independent samples cluster together based on the subjected acceleration irrespective of the flight day for both parabolas. At least three independent samples for each acceleration from different flight days were employed for hierarchical clustering. Hyper-g, while μg led to a random movement as compared to a 1 g control sample While these studies confirmed the physiological nature of the gravitactic orientation, no studies on differential gene expression in E. gracilis had been performed in the course of parabolic flights. This was in large part due to the lack of complete genomic and transcriptomic datasets of E. gracilis. We show that short time accelerations or microgravity is sufficient to cause significant changes in gene expression in E. gracilis

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.