Abstract
We examined effects of three structurally related pyridinium compounds, 1-methyl-4-phenylpyridinium (MPP+), paraquat, and 1-methyl-4-(4′-nitrophenyl) pyridinium (analog 1), on the energy metabolism in pheochromocytoma PC12 cells. MPP+inhibited the intracellular NADH oxidation by the mitochondrial respiratory chain, judging from the decrease of the cytosolic NAD+/NADH ratio. Paraquat enhanced the oxidation of NADH and decreased intracellular ATP more than MPP+. The inhibition of the mitochondrial respiration by MPP+was partially compensated by enhanced glycolysis, while paraquat inhibited glycolysis at the level of hexokinase probably due to the intracellular production of oxygen radicals. Analog 1 moderately enhanced glycolysis, moderately increased a cytosolic ratio of NAD+/NADH, and caused only a slight decline of intracellular ATP. Paraquat was the most cytotoxic of the three compounds. Thus, the three structurally related compounds, MPP+, paraquat, and analog 1, showed different effects on the mitochondrial respiratory chain and the glycolytic pathway in PC 12 cells. Their properties found in the cells well reflected those obtained by using bovine heart submitochondrial particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.