Abstract
To assess whether EEG synchronization changes during short-term low-frequency electrical stimulation of the seizure onset zone. In 10 patients (34+/-11 years) with pharmaco-resistant epilepsy the seizure onset zone (9 temporal lobe, 1 frontal lobe) was electrically stimulated at 1Hz for 5min via intracranial electrodes. Bipolar stimuli were applied and four pulse widths (0.05, 0.1, 0.5, and 1.0ms) were tested. Stimulation amplitudes were held fixed at 1mA for strip electrodes and at 2mA for depth electrodes. Changes of EEG synchronization were assessed by the eigenvalue dynamics of the cross-correlation matrix computed from a 2.5s sliding window. 37 stimulations were performed. We observed EEG desynchronization in 49% (18/37), an increase of EEG synchronization in 27% (10/37) and an EEG pattern with no significant change of synchronization in 24% (9/37). EEG synchronization most frequently occurred when stimulating with a pulse width of 0.5ms. In a patient with bilateral independent seizure onsets stimulation effects on EEG synchronization were different for each side. In the patient with the shortest duration of temporal lobe epilepsy, stimulation triggered periodic epileptic spikes phase-locked to stimulation. One patient experienced an aura during stimulation, which did not evolve into a seizure, and in one patient a sub-clincial seizure occurred. Low-frequency stimulation of the seizure onset zone is associated with different changes of EEG synchronization and its effects depend on the widths of the stimulation pulses. It may be an appropriate stimulation technique for long-term studies assessing whether synchronized or desynchronized brain dynamics prevent seizure occurrence.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.