Abstract

Abstract In this study, the projected regional precipitation changes over northeast Asia (NEA) during early summer [May–July (MJJ)] for the late twenty-first century (2071–2100) were investigated using a high-resolution regional climate model (WRF3.4) based on the representative concentration pathways (RCPs) induced by the global circulation model (HadGEM2-AO). The increased horizontal resolution of the regional model with a 12.5-km horizontal resolution enabled it to reproduce the terrain-following features reasonably well compared to low-resolution reanalysis and HadGEM2-AO model data. The results of a regionally downscaled historical (1981–2010) experiment (D_Historical) demonstrated the model’s ability to capture the spatial and temporal variations of rainband migrating meridionally during MJJ over NEA. According to the regional model projection, intensive precipitation will increase and the rainband will affect the Korean Peninsula approximately 10 days earlier than in the D_Historical cases in both RCP4.5 and RCP8.5 (2071–2100). The precipitation will also increase in most of the domain, particularly in the southern Korean Peninsula and Kyushu, Japan. These increases in precipitation are attributed to increases in the northward moist transport coming from the lower latitudes and moist static instability in the lower atmosphere. According to this study, the convective precipitation contributes mainly to the increase in total precipitation. On the other hand, the large-scale nonconvective precipitation related to the stationary front will not change significantly but even tends to decrease approximately from the middle of July. The extreme precipitation intensity is also projected to increase by at least 22% (38%) in RCP4.5 (RCP8.5).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.