Abstract

To date, studies of development have mainly focused on the embryonic stage and a short time thereafter. There has been little research on the whole life of an individual from childhood to aging and death. For the first time, we used noninvasive urinary proteome technology to track changes in several important developmental time points in a group of rats, covering 10 time points from childhood, adolescence, young adulthood, middle adulthood, and near-death in old age. Similar to previous studies on puberty, proteins were detected and they are involved in sexual or reproductive maturation, mature spermatozoa in seminiferous tubules (first seen), gonadal hormones, decline of estradiol, brain growth, and central nervous system myelination, and our differential protein enrichment pathways also included reproductive system development, tube development, response to hormone, response to estradiol, brain development, and neuron development. Similar to previous studies in young adults, proteins were detected and they are involved in musculoskeletal maturity, peak bone mass, development of the immune system, and growth and physical development, and our differential proteins enrichment pathways also included skeletal system development, bone regeneration, system development, immune system processes, myeloid leukocyte differentiation, and developmental growth. Studies on aging-related changes in neurons and neurogenesis have been reported, and we also found relevant pathways in aged rats, such as regulation of neuronal synaptic plasticity and positive regulation of long-term neuronal synaptic plasticity. However, at all time points throughout life, there were many biological pathways revealed by differential urinary protein enrichment involving multiple organs, tissues, systems, etc. that have not been mentioned in existing studies. This study shows comprehensive and detailed changes in rat lifetime development through the urinary proteome, helping to fill the gap in development research. Moreover, it provides a new approach to monitoring changes in human health and diseases of aging using the urinary proteome.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call