Abstract

The extraction of white jack bean (Canavalia ensiformis) protein isolate frequently leaves a lot of precipitates containing complex carbohydrates such as starch, dietary fiber, and resistant starch. Repeated autoclaving – cooling cycles can increase the content of soluble fiber and resistant starch. The aim of this study was to determine changes of dietary fiber and resistant starch content of complex carbohydrates of white jack bean during autoclaving-cooling cycles and characterization of its chemical composition and functional properties. The experiment was conducted by applying the autoclaving process at 121oC for 15 minutes followed by cooling at 4oC for 24 hours up to 5 times. Sample was taken from each cycle of autoclaving – cooling. The best treatment was the sample with the highest total soluble fiber and resistant starch content. The best sample will be determined its chemical composition and functional properties. This study used a one-way analysis of variance to subject the data according to Completely Randomized Design. Duncan’s Multiple Range Test was applied to determine significant differences among 5 treatment means at the 5% significance level. The highest value of total soluble fiber and resistant starch content was obtained from autoclaving-cooling cycles of 3 times. The treatment increased the soluble fiber and resistant starch by 14.37% and 18.34%, respectively, but decreased 14.41% insoluble fiber. The complex carbohydrates of white jack bean treated with autoclaving-cooling cycles of 3 times had chemical composition: 10.68% moisture content, 0.92% ash content, 0.02% fat content, 1.85% protein content, 97.20% carbohydrate content (by difference), 68.42% starch content, and 14.90 ppm HCN. It also had functional properties: 351.67% WHC, 115.67% OHC, 775.33% SC, 84.63 meq/kg CEC. The conclusion was the white jack bean carbohydrate complex treated with 3 times autoclaving-cooling cycles was the best treatment to produce the highest value of total soluble fiber and resistant starch content. We suggest to examine another autoclaving temperature and cooling time to compare the result.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call