Abstract
A ground-based seeding experiment using carbon dioxide and propane sprayed from pressurized bottles was carried out under supercooled cloud conditions on a small spatial and short time scale. Water vapor deposition on the artificially generated dry ice and propane ice germs as the main ice formation process (nucleation and growth) is consistent with the experimental results. After nucleation, diffusional growth of the ice particles, partly at the expense of evaporating small droplets, was identified during the mixing of the seeding line with the ambient supercooled cloud. Within the seeding plume, ice water contents up to 80% of the total condensed water are observed, although the size of the formed ice particles did not exceed 25 μm. From the changes of the ice and supercooled liquid phase with time under mixed-phase conditions, liquid water content (LWC) evaporation, ice water content (IWC) formation, and ice crystal growth rates are estimated, which are not affected by the artificial nucleation process. Thus, these rates are assessed to be applicable for a growing ice phase of small ice particles in a young mixed-phase cloud, where other growth mechanisms, like riming or aggregation, are negligible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.