Abstract

The interaction between the gut and the liver plays a significant role in individual health and diseases. Mounting evidence supports that bile acids are important metabolites in the bidirectional communication between the gut and the liver. Most of the current studies on the “gut-liver axis” have focused on higher vertebrates, however, few was reported on lower invertebrates such as shrimp with an open circulatory system. Here, microbiomic and metabolomic analyses were conducted to investigate the bacterial composition and bile acid metabolism in intestine, hemolymph and hepatopancreas of Penaeus vannamei fed diets supplemented with octanoic acid and oleic acid. After six days of feeding, the bacterial composition in intestine, hemolymph and hepatopancreas changed at different stages, with significant increases in the relative abundance of several genera such as Pseudomonas and Rheinheimera in intestine and hepatopancreas. Notably, there was a more similar bacterial composition in intestine and hepatopancreas at the genus level, which indicated the close communication between shrimp intestine and hepatopancreas. Meanwhile, higher content of some bile acids such as lithocholic acid (LCA) and α-muricholic acid (α-MCA) in intestine and lower content of some bile acids such as taurohyocholic acids (THCA) and isolithocholic acid (IsoLCA) in hepatopancreas were detected. Furthermore, Spearman correlation analysis revealed a significant correlation between bacterial composition and bile acid metabolism in intestine and hepatopancreas. The microbial source tracking analysis showed that there was a high proportion of intestine and hepatopancreas bacterial community as the source of each other. Collectively, these results showed a strong crosstalk between shrimp intestine and hepatopancreas, which suggests a unique potential “intestine-hepatopancreas axis” in lower invertebrate shrimp with an open circulatory system. Our finding contributed to the understanding of the interplay between shrimp intestine and hepatopancreas in the view of microecology and provided new ideas for shrimp farming and disease control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.