Abstract

A study of wheat ( Triticum aestivum L.) leaves phenolome was carried out during cold acclimation of the winter (Claire) and spring (Bounty) varieties using a combination of HPLC–ESI–MS techniques. A total of 40 phenolic and flavonoid compounds were identified, and consisted mainly of two coumarin derivatives, eight simple phenolic derivatives, 10 hydroxycinnamoyl amides and 20 flavonoid derivatives. Identification and quantification of individual compounds were performed using an HPLC system coupled with a photodiode array detector and two different ESI–MS systems, in combination with a multiple reaction monitoring (MRM) technique. The analyses indicated that, although there were no qualitative differences in their profiles, the winter variety exhibited a higher phenolic content compared to the spring variety when both were grown under non-acclimated (control) conditions. Cold acclimation, on the other hand, resulted in a significant differential accumulation of phenolic compounds in both varieties: mostly as luteolin C-glycosides and their O-methyl derivatives in the winter variety (Claire) and a derivative of hydroxycinnamoyl amide in the spring variety (Bounty). These compounds accumulated in relatively large amounts in the apoplastic compartment. The accumulation of the O-methylated derivatives was associated with a marked increase in O-methyltransferase (OMT) activity. In addition, the trimethylated flavone, 3′,4′,5′-trimethyltricetin was identified for the first time in the native extracts of both control and cold-acclimated wheat leaves. The accumulation of a mixture of beneficial flavonoids, such as iso-orientin, vitexin and tricin in cold acclimated wheat leaves, attests for its potential as an inexpensive source of a health-promoting supplement to the human diet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call