Abstract

Abstract A never-dried (ND) fines-free softwood bleached kraft pulp was converted to air-dried and thermally dried handsheets, which were then disintegrated or sonicated in water under various conditions. These disintegrated or sonicated pulps were converted to handsheets and used to obtain fundamental data on paper recycling. The water-vapor-adsorption isotherms of the pulp and sheet samples after super-critical-point drying showed clear differences between the water volumes adsorbed by the ND pulp, once-dried pulp, and dried sheets at the same relative humidities above 50%. These differences are caused by hornification of the pulp and sheet samples during drying and recycling. Air and thermal drying of wet webs decreased the adsorbed-water-vapor volume by 7%–9% and 14%–18%, respectively, relative to that adsorbed by the original ND pulp. We hypothesize that the decrease in water-vapor-adsorption volume from that of the original ND pulp at relative humidities >50% reflects the degree of irreversible formation of hydroxyl groups in the originally hydrophilic hemicelluloses and crystalline cellulose microfibril surfaces in the pulp and sheet samples during drying and paper recycling. The water-vapor-adsorption isotherms of pulp and sheet samples can be used to quantify the degree of hornification or the amount of irreversible hydrogen bonds formed during paper recycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.