Abstract

In this study, changes in viscoelastic material properties of brain tissue due to traumatic axonal injury (TAI) were investigated. The impact acceleration model was used to generate diffuse axonal injury in rat brain. TAI in the corticospinal (CSpT) tract in the brain stem was quantified using amyloid precursor protein immunostaining. Material properties along the CSpT were determined using an indentation technique. The results showed that the number of injured axons at the pyramidal decussation (PDx) was approximated 10 times higher than in the ponto-medullary junction (PmJ). The instantaneous elastic response was reduced approximately 70% at PDx compared to 40% at PmJ and the relaxation was uniformly reduced approximately 30%, which were attributed to the effect of injury on tissue properties. Application of a visco-elastic-plastic model that changes due to TAI can significantly alter the results of computational models of brain injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.