Abstract
The intriguing impact of physical mixing processes on species interactions has always fascinated ecologists. Here, we exploit recent advances in plankton models to develop competition theory that predicts how changes in turbulent mixing affect competition for light between buoyant and sinking phytoplankton species. We compared the model predictions with a lake experiment, in which the turbulence structure of the entire lake was manipulated using artificial mixing. Vertical eddy diffusivities were calculated from the measured temperature microstructure in the lake. Changes in turbulent mixing of the lake caused a dramatic shift in phytoplankton species composition, consistent with the predictions of the competition model. The buoyant and potentially toxic cyanobacterium Microcystis dominated at low turbulent diffusivity, whereas sinking diatoms and green algae dominated at high turbulent diffusivity. These findings warn that changes in the turbulence structure of natural waters, for instance driven by climate change, may induce major shifts in the species composition of phytoplankton communities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.