Abstract
AbstractThe current study extends earlier work that demonstrated future extratropical transition (ET) events will feature greater intensity and heavier precipitation to specifically consider potential changes in the impacts of landfalling ET events in a warming climate. A quasi‐idealized modeling framework allows comparison of highly similar present‐day and future event simulations; the model initial conditions are based on observational composites, increasing representativeness of the results. The future composite ET event features substantially more impactful weather conditions in coastal areas, with heavier precipitation and greater storm intensity. Specifically, a Category 2 present‐day storm attained Category 4 Saffir‐Simpson intensity in the future simulation and maintained greater intensity throughout the entire life cycle, although the storm undergoes less reintensification during the post‐ET process, a result of reduced baroclinic conversion. These findings suggest increased potential for coastal hazards due to stronger tropical cyclone winds and heavier rainfall, leading to more severe coastal flooding and storm surge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.