Abstract

Lactation in pinnipeds represents the most significant cost to mothers during the reproductive cycle. Dynamics of trace elements and their mobilization associated with energy reserves during such an intense physiological process remains poorly understood in marine mammals. The changes in tissue concentrations of 11 elements (Ca, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Se, V, and Zn) were investigated in a longitudinal study during the lactation period and during the post-weaning fast period. Blood, milk, blubber, and hair samples were collected sequentially from 21 mother–pup pairs of grey seals (Halichoerus grypus) from the Isle of May in Scotland. Maternal transfer through the milk was observed for all trace elements, except for Cd. As an indicator of the placental transfer, levels in pup lanugo (natal coat) revealed also the existence of maternal transfer and accumulation of all assayed trace elements during the foetal development. The placental and mammary barriers against non-essential metal transfer to offspring appear to be absent or weak in grey seals. Examining the contamination levels showed that this grey seal population seems more highly exposed to Pb than other phocid populations (2.2mg/kg dw of grey seal hair). In contrast, blood and hair levels reflected a lower Hg exposure in grey seals from the Isle of May than in harbour seals from the southeastern North Sea. This study also showed that trace element concentrations in blood and blubber could change rapidly over the lactation period. Such physiological processes must be considered carefully during biomonitoring of trace elements, and potential impacts that rapid fluctuations in concentrations can exert on seal health should be further investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call