Abstract

AbstractTop-of-atmosphere (TOA) shortwave (SW) angular distribution models (ADMs) approximate—per angular direction of an imagined upward hemisphere—the intensity of sunlight scattered back from a specific Earth–atmosphere scene. ADMs are, thus, critical when converting satellite-borne broadband radiometry into estimated radiative fluxes. This paper applies a set of newly developed ADMs with a more refined scene definition and demonstrates tenable changes in estimated fluxes compared to currently operational ADMs. Newly developed ADMs use a semiphysical framework to consider cloud-top effective radius () and above-cloud water vapor (ACWV), in addition to accounting for surface wind speed and clouds’ phase, fraction, and optical depth. In effect, instantaneous TOA SW fluxes for marine liquid-phase clouds had the largest flux differences (of up to 25 W m−2) for lower solar zenith angles and cloud optical depth greater than 10 due to extremes in or ACWV. In regions where clouds had persistently extreme levels of (here mostly for and ) or ACWV, instantaneous fluxes estimated from Aqua, Terra, Meteosat-8, and Meteosat-9 satellites using the two ADMs differed systematically, resulting in significant deviations in daily mean fluxes (up to ±10 W m−2) and monthly mean fluxes (up to ±5 W m−2). Flux estimates using newly developed, semiphysical ADMs may contribute to a better understanding of solar fluxes over low-level clouds. It remains to be seen whether aerosol indirect effects are impacted by these updates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call