Abstract

Rainbow trout undergo natural cone degeneration and thus are interesting models for examining mechanisms of neural degeneration. They have ultraviolet-sensitive (UVS) cones that are lost over most of the retina during development; only a small functional population remains in the dorsal retina. How this spatial distribution of UVS cones is maintained is unclear. Thyroxine (T4) induces UVS cone loss, and local thyroid hormone regulation was hypothesized to control UVS cone distribution. Thyroid hormone receptor alpha (TRalpha), thyroid hormone receptor beta (TRbeta) and Type 2 deiodinase (D2) regulate thyroid hormone exposure to target cells. Regional retinal expression of these genes was investigated during exogenous T4 treatment and natural smoltification of rainbow trout. Each retina from dark-adapted parr, T4-treated parr and natural smolts was divided into four quadrants, and total RNA was isolated. Quantitative real-time RT-PCR analysis demonstrated that all retinal quadrants had increased accumulation of TRbeta transcripts 2 days post-T4 treatment, corresponding to initiation of SWS1 opsin downregulation. Smolts exhibited decreased accumulation of TRalpha and TRbeta transcripts in all quadrants, but this effect was most pronounced in the dorso-temporal (DT) retinal quadrant where UVS cones persist. By contrast, in 2 day T4-treated parr, the DT quadrant showed increased expression of TRalpha and TRbeta. Furthermore, D2 transcripts decreased in the DT quadrant of T4-treated parr but increased in the DT quadrant of smolts. These results suggest that T4 upregulates TRbeta expression to initiate SWS1 opsin downregulation, while TRalpha and TRbeta downregulation occurs to prevent natural loss of UVS cones from the DT retina.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call