Abstract

The thylakoids of vegetative cells of the filamentous cyanobacterium, Anabaena cylindrica, are capable of oxygen-evolving photosynthesis and contain both Photosystems I and II (PSI and PSII). The heterocysts, cells specialized for nitrogen fixation, do not produce oxygen and lack Photosystem II activity, the major accessory pigments, and perhaps the chlorophyll a associated with PSII. Freeze-fracture replicas of vegetative cells and of heterocysts reveal differences in the structure of the thylakoids. A histogram of particle sizes on the expolasmic fracture face (E-face, EF) of vegetative cell thylakoids has two major peaks, at 75 and 100 Å. The corresponding histogram for heterocyst thylakoids lacks the 100 Å size class, but has a very large peak at about 55 Å with a shoulder at 75 Å. Histograms of protoplasmic fracture face (P-face, PF) particle diameters show single broad peaks, the mean diameter being 71 Å for vegetative cells and 64 Å for heterocysts. The thylakoids of both cell types have about 5600 particles/μm 2 on the P-face. On the E-face, the density drops from 939 particles/μm 2 on vegetative cell thylakoids to 715 particles/μm 2 on heterocyst thylakoids. The data suggest that the 100 Å E-face particle of vegetative cell thylakoids is a PSII complex. The 55 Å EF particle of heterocysts may be part of the nitrogenase complex or a remnant of the PSII complex. The role of the 75 Å EF particle is unknown. Other functions localized on cyanobacterial thylakoids, such as respiration and hydrogenase activity, must be considered when interpreting the structure of these complex thylakoids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call