Abstract

Using freeze-fracture electron microscopy we have recently shown that non-photochemical quenching (NPQ), a mechanism of photoprotective energy dissipation in higher plant chloroplasts, involves a reorganization of the pigment-protein complexes within the stacked grana thylakoids1. Photosystem II light harvesting complexes (LHCII) are reorganized in response to the amplitude of the light driven transmembrane proton gradient (ΔpH) leading to their dissociation from photosystem II reaction centers and their aggregation within the membrane1. This reorganization of the PSII-LHCII macrostructure was found to be enhanced by the formation of zeaxanthin and was associated with changes in the mobility of the pigment-protein complexes therein1. We suspected that the structural changes we observed were linked to the ΔpH-induced changes in thylakoid membrane thickness that were first observed by Murikami and Packer2,3. Here using thin-section electron microscopy we show that the changes in thylakoid membrane thickness do not correlate with ΔpH per se but rather the amplitude of NPQ and is thus affected by the de-epoxidation of the LHCII bound xanthophyll violaxanthin to zeaxanthin. We thus suggest that the change in thylakoid membrane thickness occurring during NPQ reflects the conformational change within LHCII proteins brought about by their protonation and aggregation within the membrane

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.