Abstract

Purpose: The purpose of this study is to compare the structural integrity of bovine lenses using small-angle X-ray diffraction techniques, before and after freezing, using both liquid nitrogen and a −20°C freezer to understand the molecular changes that occur and to see if any permanent structural changes result from the freezing and thawing process. Materials and Methods: We used small-angle X-ray scattering to investigate the effects of freezing whole bovine eye lenses (i) in liquid nitrogen and (ii) at −20°C, to better understand the structural basis of the phase transitions. Results: Lenses frozen in liquid nitrogen thawed more rapidly than those placed at −20°C. With both freezing methods, X-ray patterns taken during the thawing process indicated less protein order than before or after freezing. After both freezing methods, the X-ray reflection returned to its original spacing and close to its original intensity values before freezing. Conclusions: We explain these phenomena in terms of a simple model based on the melting of ice crystals. We also suggest that the liquid nitrogen method of freezing is probably the better method of cryo-preservation for maintaining lens crystallin order.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.