Abstract
This study compares the trends of changes in corneal asphericity, corneal and total aberrations and peripheral refraction in myopic eyes after excimer laser and orthokeratology correction. Aberrometry (OPD-Scan III; Nidek, Japan) was performed in 63 patients (126 eyes) with moderate and high myopia before and after femtosecond laser-assisted in situ keratomileusis (Femto-LASIK; 88 eyes, group 1) and photorefractive keratectomy (PRK; 38 eyes, group 2). Peripheral refraction (Grand Seiko AutoRef/Keratometer) at 15° and 30° from the center of the fovea was observed in 12 patients of group 1 and in 18 patients with a background of orthokeratology correction (group 3). Corneal asphericity factor Q transitioned to positive values after PRK and Femto-LASIK. Corneal aberrations: root mean square higher order aberration (RMS HOA) increased in both groups, Tilt 1 increased in group 1 and became negative in group 2, Tilt 2 increased in group 2 and went negative in group 1. Trefoil 6 did not change in group 1 and decreased in group 2. Coma 7 and 8 increased synchronously in both groups. Spherical aberrations (SA) increased in group 1, and went negative in group 2. Total aberrations changed to a lower degree, and these changes were not synchronous with the corneal ones; RMS HOA decreased in group 1 (while corneal RMS increased significantly), and in the PRK group it increased, but much less than the corneal. Total SA increased in group 1 and did not change in group 2. Peripheral myopic defocus formed in all cases, after Femto-LASIK the maximum was in the zone of 30º, after orthokeratology lenses - in the zone of 15º. Using excimer laser and orthokeratology to reshape the cornea in full accordance with its different profiles have different effects on the wavefront and peripheral refraction of the eye. The internal optics of the eye partially compensates corneal aberrations induced by the excimer laser.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.