Abstract

The present study aims at evaluating the significance of zinc ions on the development of brain damage in a model of traumatic brain injury (TBI). The zinc ion specific autometallographic technique, the ZnSe AMG method, using silver enhancement of in vivo–captured zinc ions bound in zinc–selenium nanocrystals was applied to follow changes in the vesicular zinc pattern. Balb/c mice, ZnT3 knockout (ZnT3-Ko) mice, a mouse genetically knocked out for the protein ZnT3 responsible for sequestering zinc into synaptic vesicles, and littermates from the genetically un-manipulated mother type mice, wild type (Wt), were used. The Wt and the Balb/c mice exhibited instantaneously a boost in the zinc staining adjacent to the lesion involving all six neocortical layers. Ultra-structural analyses revealed that the in vivo created ZnSe nanocrystals were still confined to the vesicles of the zinc-enriched (ZEN) neurons in the neuropil. No differences between the Balb/c and Wt mice were seen at any time points. In the ZnT3-Ko mice the ZEN terminals stayed void of AMG grains, but a number of neuronal somata around the lesion became loaded with ZnSe nanocrystals. These silver-enhanced ZnSe nanocrystals were confined to the cytoplasm of the somata and their proximal dendrites. No such soma staining was seen in the Wt or Balb/c mice. We speculate that vesicular zinc may not contribute to neuronal damage following TBI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.