Abstract
An ultrastructural investigation was conducted of xylem parenchyma cells of peach (Prunus persica [L.] Batsch.) cv. Harbrite and red oak (Quercus rubra L.) in response to a freezing stress. Freezing curves of xylem tissues, as determined by differential thermal analysis, were used to predict temperatures at which both living and dead cells would be observed. Tissues were exposed to low temperatures (‐15 to ‐35 C) and fixed in a frozen state at ‐10C and at thawing. Current models of the freezing behavior of supercooled plant cells suggest that xylem parenchyma cells behave as individual water droplets. This implies that cells are unresponsive to the presence of low temperature and extracellular ice until internal nucleation triggers lethal, intracellular freezing. For these reasons, deep supercooling has been described as an avoidance mechanism. Results of this study confirmed earlier reports that xylem parenchyma cells freeze as individuals or in small groups. Individual cells, however, did not exhibit a neutral response. Instead, a range of responses was observed that included internal and external vesiculation, deep invaginations of the plasma membrane, and the formation of electron‐dense deposits external to the plasmalemma. In general, our observations suggested that the cells responded to a dehydrative stress. Results are discussed in context of the biophysical data associated with deep supercooling phenomena and compared to responses of cells that exhibit extracellular freezing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.