Abstract

China has been experiencing significant climate and land use changes over the past decades. The way in which these changes, particularly a warming hiatus and national ecological restoration projects that occurred almost concurrently in the late 1990s, have influenced vegetation net primary productivity (NPP), is not well documented. Here, we estimated annual and seasonal changes in China’s NPP between 1982 and 2015 using the Carnegie-Ames-Stanford Approach model and examined their shifting years (SHYs) caused by the switch in climatic factors and the restoration projects. Our analyses revealed that the growth of annual, spring and summer NPP stalled in 1997 or 1998, while the trend of autumn NPP increased in 1992 at the national scale. We also showed that the changes in the NPP trends were more sensitive to the warming hiatus in spring and autumn, as well as in the temperate monsoonal region and the Tibetan Plateau, while the larger trend of autumn NPP in eastern China after the SHY was strongly coupled with increased monsoonal precipitation. Although the starting years of the restoration projects were partially consistent with the SHYs of the NPP trends, the projects were likely playing minor roles in enhancing NPP increase. Our findings can be applied for ecological risk assessment and future management of ecological restoration projects in the context of global change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.