Abstract

Interannual variability in the thermal structure of lakes is driven by interannual differences in meteorological conditions. Dynamic or mechanistic models and empirical or statistical methods have been used to integrate the physical processes in lakes enabling the response of the thermal structure to changes in air temperature to be determined. Water temperature records for Lake Mendota, WI., are possibly the most extensive for any dimictic lake in the world and allowed both approaches to be used. Results from both techniques suggest the mixed layer temperature increases with increasing air temperature. Results from the empirical approach suggested epilimnion temperatures increase 0.5 to 1.0°C per 1.0°C increase in air temperature compared to 0.4 to 0.85°C estimated from a dynamical model (DYRESM). Increased air temperatures are related to significant warming in deep water temperatures in the absence of stratification; however, mid summer hypolimnion temperatures are expected to change very little or increase only slightly in response to climatic warming. Both approaches suggest increases in air temperatures increase the length of summer stratification; results from the dynamic model suggest an increase of approximately 5 days per 1°C increase in air temperature. Longer stratification is reflected in shallower late summer thermocline depths. With these quantitative relationships and forecast increases in air temperature for the 2 × CO2 climatic scenario (Greenhouse Effect) from three General Circulation Models, projections are made describing the changes in the future mean thermal structure of moderate to large sized lakes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.