Abstract

The changes in the structure, the substructure, and the state of stress in the surface layers of tungsten targets and the cracking processes in them are studied in model experiments on irradiation by a hydrogen plasma in a quasi-stationary plasma accelerator QSPA Kh-50, which adequately reproduces the energy density and the edge localized mode (ELM) time in ITER. The plasma heat load is up to 1 MJ m−2, the pulse duration is 0.25 ms, and the maximum number of irradiating pulses of 150. The development of residual macrostresses from compression to tension is analyzed by X-ray diffraction, and their relation to cracking is shown. Irradiation is found to increase the lattice parameter of tungsten in the undeformable section from a 0 ≈ 0.31642 ± 0.00001 (initial state) to 0.31645 ± 0.00001 nm. The changes in the coherent scattering region and microstrains are estimated. The role of point defects and their complexes in the irradiation-assisted processes is established. A qualitative model is proposed to explain these changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.