Abstract

The alpine steppe at Qinghai-Tibetan Plateau is an important area for conserving water source and grassland productivity; however, knowledge about the microbial community structure and function and the risk to human health due to alpine plant-soil ecosystems is limited. Thus, we used prediction methods, such as Tax4Fun, and performed a metagenome pre-study using 16S rRNA sequencing reads for a small scale survey of the microbial communities at degraded alpine steppes (i.e., non-degraded (ND), lightly degraded (LD), moderately degraded (MD), heavily degraded (HD), and extremely degraded (ED) steppes) by Illumina high-throughput sequencing technology. Although there were no significant differences in the microbial alpha diversity among the different degraded alpine steppes and the dominant phyla at the different degraded alpine steppes, including Actinobacteria, Proteobacterial, Acidobacteria and Chloroflexi, were similar, the beta-diversity significantly differed, indicating that alpine steppe degradation might result in variation in microbial community compositions. The linear discriminate analysis (LDA) effect size (LEfSe) analysis found twenty-one biomarkers, most of which belonged to Actinobacteria, suggesting that microbes with a special function (such as the decomposition soil organic matter) might survive in alpine steppes. In addition, the functional profiles of the bacterial populations revealed an association with many human diseases, including infectious diseases. In addition, the microbial communities were mainly correlated with the populations of Gramineae and soil total phosphorous. These results suggested that alpine steppe degradation could result in variations in the microbial community composition, structure and function at Qinghai-Tibetan Plateau. Further studies investigating the degraded alpine steppe environment are needed to isolate these potential pathogenic microbes and help protect livestock using these alpine steppes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call