Abstract
Objective Endothelial cell inflammation is a common pathophysiological process in many cardiovascular and cerebrovascular diseases. Small RNA is a kind of short nonprotein coding RNA molecule. Changes in the small RNA expression in endothelial cells have been linked to the development of cardiovascular and cerebrovascular diseases. We investigated and verified differentially expressed small RNAs in endothelial cells in response to inflammatory stimulation. Methods Primary rat endothelial cells were obtained from Sprague-Dawley rats and treated with 10 ng/ml TNF-α for 24 hours. Small RNA sequencing was used to generate extensive small RNA data. Significantly differentially expressed small RNAs identified in the analysis were further confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Then, we investigated the tissue-specific small RNA expression after RNA extraction from different tissues. Results Small RNA sequencing demonstrated that 17 miRNAs, 1 piRNA, 10 snoRNAs, and 7 snRNAs were significantly differentially expressed. qRT-PCR identified 3 miRNAs, 2 snoRNAs, and 2 snRNAs with significantly different expression. Analysis of the tissue-specific expression showed that rno-miR-126a-5p was predominantly expressed in the lung, rno-miR-146a-5p in the intestines, and rno-novel-178 in the heart. Rno-piR-017330 was mainly expressed in the muscle. snoR-8966.1 was predominantly expressed in the bone. snoR-6253.1 was mostly expressed in the vessels and bone. snR-29469.1 was mainly expressed in the bone, and snR-85806.1 was predominantly expressed in the vessels and bone. Conclusions We report for the first time the expression of small RNAs in endothelial cells under inflammatory conditions. TNF-α can regulate the expression of small RNAs in endothelial cells, and their expression is tissue-specific.
Highlights
Small RNAs are key regulators of biological activities and play an important role in the regulation of the gene expression, biological ontogenesis, metabolism, and the occurrence of diseases and other physiological processes
Identification of Differentially Expressed miRNAs and Tissue-Specific Analysis. miRNAs play an important role in cellular processes; so, we performed small RNA Sequencing (RNA-seq) to analyze the miRNA expression in endothelial cells stimulated with TNF-α
The small RNA-seq results showed that ten miRNAs were upregulated, and seven miRNAs were downregulated in endothelial cells stimulated with TNF-α (Figures 1(a) and 1(b))
Summary
Small RNAs are key regulators of biological activities and play an important role in the regulation of the gene expression, biological ontogenesis, metabolism, and the occurrence of diseases and other physiological processes. Oxidative Medicine and Cellular Longevity several specific changes in miRNAs and other small RNAs in inflamed endothelial cells have been elucidated, a comprehensive analysis of small RNA changes has not been performed. To gain insights into small RNA changes in endothelial cells in response to inflammation, we used small RNA sequencing (small RNA-seq) to generate extensive small RNA data, along with RNA-seq data. We identified differentially expressed small RNAs and performed tissue-specific analysis. These findings might provide novel insight into disease pathogenesis and early diagnosis
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.