Abstract

Over three summers we used direct underwater observation to examine the summer to autumn differences in seven microhabitat properties of three age-classes of juvenile Atlantic salmon (Salmo salar) in the Little Sevogle River of northeastern New Brunswick. Salmon of all three age-classes occupied a wide range of water depths during summer, but were concentrated mainly in depths of 24–36 cm. In autumn, they occurred in this range almost exclusively. The streambed stones most closely associated with the individual positions of all ages were always <20 cm in summer and mostly (84–92%) <10 cm in diameter. In autumn, all ages were associated with home stones up to 40 cm in diameter, with 65–83% of the stones exceeding 20 cm; the size of home stones selected increased with fish age in autumn. There was no apparent relationship between the water depth and home stone size distributions occupied by all age-classes and available in the stream during either summer or autumn. Summer focal water velocity (velocity at the fish's snout) was predominantly 10–30 cm∙s−1 for 0+, 10–40 cm∙s−1 for 1+, and 30–50 cm∙s−1 for 2+ salmon, but during autumn it was almost always <10 cm∙s−1 for all ages. The bottom and surface water velocities as well as the maximum water velocity within 1 m of fish stations increased with fish age during summer and autumn. At the summer–autumn transition, 0+ salmon selected higher bottom, surface, and maximum water velocities, 2+ salmon selected lower velocities, but selection by 1+ salmon remained unchanged. We view substrate size followed by water depth as the primary properties influencing stream suitability for juvenile Atlantic salmon in autumn.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call