Abstract

The rate of ocean-crust production exerts control over mantle heat loss, sea level, seawater chemistry, and climate. Reconstructing ocean-crust production rates back in time relies heavily on the distribution of present-day seafloor age. Different strategies to account for the incomplete preservation of older seafloor have led to differing conclusions about how much production rates have changed since the Cretaceous, if at all. We have constructed a new global synthesis of ocean-crust production rates along 18 mid-ocean ridges for the past 19 Myr at high temporal resolution.  We find that the global ocean-crust production rate decreased by ~37% from its maximum during 19-15 Ma to its minimum during 6-4 Ma. Our ability to resolve these changes at a statistically significant level is due to the availability of many new plate reconstructions at high temporal resolution and our use of an astronomically calibrated magnetic time scale with small uncertainties in reversal ages. We show that the reduction in crust production occurred because spreading rates slowed down along almost all ridge systems. While the total ridge length has varied little since 19 Ma, some fast-spreading ridges have grown shorter and slow-spreading ridges grown longer, amplifying the spreading-rate changes. The change in crust production rate skews the seafloor area-age distribution toward older crust, and we estimate that sea level may have fallen by as much as 32-37 m and oceanic heat flow may have been reduced by 6%. We also show, using a simple model of the carbon cycle, that the inferred changes in tectonic degassing resulting from the crust-production changes can account for the majority of long-term surface-temperature evolution since 19 Ma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.