Abstract

Changes in the chemical, viscoelastic and hygroscopic properties of wood cell walls in Chinese fir (Cunninghamia lanceolata) during the transition from sapwood to heartwood were studied to provide insights into the formation of heartwood. In situ imaging FTIR measurements indicated that the composition of the main components of cell walls remained almost unaltered, but more extractives were deposited in the wood cell walls during the sapwood–heartwood transition. Compared to the sapwood and transition wood, the heartwood had a higher softening temperature and greater activation energy, suggesting that the mobility restrictions of cell wall biopolymers were due to extractives obstructing the accessing of the plasticizer (ethylene glycol). The moisture sorption was the same from the sapwood to heartwood at a low relative humidity (RH), while the heartwood adsorbed less water at a high RH, probably caused by the extractives deposited in the matrix and mesopores of heartwood cell walls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.